organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andrea Johnston,^a Alastair J. Florence^a* and Alan R. Kennedy^b

^aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: alastair.florence@strath.ac.uk

Key indicators

Single-crystal synchrotron study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.107 Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Hydrochlorothiazide *N*,*N*-dimethylformamide solvate

Hydrochlorothiazide forms a 1:1 solvate with N,N-dimethylformamide (systematic name: 6-chloro-3,4-dihydro-2H-1,2,4benzothiadiazine-7-sulfonamide-1,1-dioxide dimethylformamide solvate), $C_7H_8ClN_3O_4S_2\cdot C_3H_7NO$. The compound crystallizes with two molecules of hydrochlorothiazide and two solvent molecules in the asymmetric unit and displays an extensive hydrogen-bonding network.

Comment

Hydrochlorothiazide (HCT) is a thiazide diuretic which is known to crystallize in at least two non-solvated forms, form I (Dupont & Dideberg, 1972) and form II (Florence *et al.*, 2005). Form (I) was produced during an automated parallel crystallization polymorph screen on HCT. The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated *N*,*N*dimethylformamide (DMF):acetone solution by slow evaporation at 278 K yielded samples of the HCT DMF solvate suitable for a synchrotron microcrystal study (Cernik *et al.*, 1997, 2000).

The compound crystallizes as a 1:1 solvate with Z' = 2 (Fig. 1). The benzothiadiazine ring of HCT adopts a nonplanar conformation in both residues, with the largest deviations from the least-squares plane through atoms C2–C7 observed for atoms S1 and N1 in residue A [0.278 (1) and 0.770 (2) Å respectively] and atom N1A in residue B [0.6802 (2) Å]. In residue A, the sulphonamide side chain adopts a torsion angle N3–S2–C5–C6 of -57.7 (2)° such that the NH₂ group is located on the same side of the molecule as the H atom (H1N) bonded to N1, a similar arrangement to that in both of the non-solvated forms of HCT. The corresponding torsion angle in residue B is 60.76 (2)°, such that the NH₂ group lies on the opposite side of the molecule to the H atom (H5N) bonded to N1A.

The crystal structure is stabilized by a network of seven N– H···O and one N–H···N intermolecular hydrogen bonds (Table 1). These contacts interconnect (a) HCT molecules (Fig. 2, contacts 1, 2, 4 and 6) and (b) HCT and solvent molecules (Fig. 2 contacts 3, 4, 5, 7 and 8). Residues A and B form parallel C(8) (Etter, 1990) hydrogen-bonded chains in the direction of the b axis via contacts 2 and 6, respectively (Fig. 3),

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved Received 23 March 2006 Accepted 28 March 2006 Online 7 April 2006

Figure 1

The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

with the chains interconnected via $C-H\cdots O$ contacts to form layers in the *ab* plane. The layers stack along the *c* axis with solvent residue *C* lying between layers of HCT molecules, interconnected via contacts 3 and 6 to HCT residues *A* and *B*, respectively. The remaining solvent molecule (residue *D*) lies approximately perpendicular to the *ab* plane and forms hydrogen bonds with HCT residue *B* (Fig. 2, contacts 5 and 8). The structure is further stabilized by seven $C-H\cdots O$ contacts (Table 1).

Experimental

The sample of HCT used to prepare the solvate was used as received from Sigma–Aldrich. This was recrystallized from a 50:50 DMF/ acetone solution by isothermal solvent evaporation at 278 K.

Crystal data

 $\begin{array}{l} C_7H_8 CIN_3O_4S_2 \cdot C_3H_7NO\\ M_r = 370.83\\ Triclinic, P\overline{1}\\ a = 7.3028 (2) Å\\ b = 9.1492 (2) Å\\ c = 23.6989 (6) Å\\ \alpha = 86.194 (1)^{\circ}\\ \beta = 89.841 (1)^{\circ}\\ \gamma = 72.855 (1)^{\circ} \end{array}$

Data collection

Bruker SMART APEX2 CCD diffractometer ω scans Absorption correction: none 10824 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.107$ S = 1.054574 reflections 441 parameters H atoms treated by a mixture of independent and constrained refinement $V = 1509.50 \text{ (7) } \text{\AA}^{3}$ Z = 4 $D_{x} = 1.632 \text{ Mg m}^{-3}$ Synchrotron radiation $\lambda = 0.8466 \text{\AA}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 150 (2) KPlate, colourless $0.18 \times 0.10 \times 0.03 \text{ mm}$

4574 independent reflections 4311 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$ $\theta_{\text{max}} = 29.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 \\ &+ 1.2599P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Figure 2

A packing diagram illustrating hydrogen bonds in (I). Unique contacts are labelled as follow: $1 = N1 \cdots O2A^i$; $2 = N2 \cdots O4^i$; $3 = N3 \cdots O5$; $4 = N3 \cdots O2A^{ii}$; $5 = N1A \cdots O5A^{iii}$; $6 = N2A^i \cdots N3A(x, -2 + y, z)$; $7 = N3A - H7N \cdots O5^{iv}$; $8 = N3A - H8N \cdots O5A^{iv}$ (see Table 1 for symmetry codes and geometry). Contacts calculated and illustrated using *PLATON* (Spek, 2003; program version 280604). Contact 6 is shown outwith the asymmetric unit for clarity.

Figure 3

The crystal packing in (I), viewed down the a axis, showing the alternating layers of HCT and DMF molecules stacked along c. Hydrogen bonds are shown as dashed lines.

Table 1

H	lyd	lrogen-	bond	geomet	try ((A, °).
---	-----	---------	------	--------	-------	-------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1N\cdots O2A^{i}$	0.80 (3)	2.60 (3)	3.290 (3)	146 (3)
$N2-H2N\cdots O4^{i}$	0.74 (3)	2.47 (3)	3.023 (3)	134 (3)
N3-H3N···O5	0.90 (3)	2.07 (3)	2.954 (3)	165 (3)
N3-H4N···O2A ⁱⁱ	0.85 (4)	2.35 (4)	3.092 (3)	146 (3)
$N1A - H5N \cdots O5A^{iii}$	0.78 (4)	2.12 (4)	2.882 (3)	167 (3)
$N2A - H6N \cdot \cdot \cdot N3A^{i}$	0.77 (4)	2.48 (4)	3.177 (3)	150 (3)
$N3A - H7N \cdots O5^{iv}$	0.95 (4)	1.89 (4)	2.820 (3)	164 (3)
$N3A - H8N \cdots O5A^{iv}$	0.86 (3)	2.12 (3)	2.942 (3)	163 (2)
$C1A - H1A1 \cdots O3A^{i}$	0.99	2.42	3.157 (3)	131
$C1-H1A\cdots O3^{i}$	0.99	2.56	3.235 (3)	125
$C1A - H1A2 \cdot \cdot \cdot O3$	0.99	2.51	3.467 (3)	162
$C7-H7\cdots O2^{ii}$	0.95	2.56	3.466 (3)	159
$C7A - H7A \cdots O1A^{ii}$	0.95	2.45	3.163 (3)	132
$C9-H9B\cdots O1^{ii}$	0.98	2.54	3.442 (3)	152
C10−H10C···O1 ⁱⁱ	0.98	2.51	3.323 (3)	141

Symmetry codes: (i) x, y - 1, z; (ii) x - 1, y, z; (iii) x + 1, y, z; (iv) x, y + 1, z.

The amine and aldehyde H atoms were located by difference synthesis and refined isotropically. The remaining H atoms were positioned geometrically and a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$ was used during the refinement process (C–H distances 0.95, 0.99 and 0.98 Å for CH, CH₂ and CH₃ groups, respectively).

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: http://www.cposs.org.uk). Thanks are also due to the CCLRC for provision of a beamtime grant at Daresbury SRS.

References

- Bruker (2004). *APEX2* (Version 1.14) and *SAINT* (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286.
- Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (2000). J. Synchrotron Rad. 7, 40.
- Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.
- Florence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E., Osmunsden, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798–o2800.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.